
 

A HIGHLY EFFICIENT CONDITIONAL MOMENT 

ALGORITHM FOR TRANSIENT FLOW IN RANDOM 

POROUS MEDIA 

Ming Ye and Shlomo P. Neuman 

neuman@hwr.arizona.edu 

Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA 

Alberto Guadagnini 

alberto.guadagnini@polimi.it 

Dipartimento di Ingegneria Idraulica Ambientale e del Rilevamento, Politecnico di Milano, 

Milan, Italy 

Daniel M. Tartakovsky 

dmt@lanl.gov 

Los Alamos National Laboratory, Los Alamos, New Mexico, USA 

 

 

 

 

 

 

 

 

 

 1



 

ABSTRACT 

We present a highly efficient parallel computational algorithm for transient flow in 

random porous media of finite extent subject to uncertain forcing terms. The algorithm combines 

finite elements with numerical Laplace transform inversion to solve recursive approximations of 

otherwise exact nonlocal equations for the mean and variance-covariance of hydraulic head and 

flux. The random head and flux are nonstationary in space-time due to arbitrary forcing and 

conditioning on measured values of hydraulic conductivity at discrete points in space. Recursive 

approximation is carried to second order in log hydraulic conductivity conditional standard 

estimation error. The conditional moment solution compares well with “ground truth” Monte 

Carlo simulations of superimposed mean-uniform and convergent flows in a rectangular domain 

when log hydraulic conductivity exhibits large random fluctuations. The algorithm requires 

much less computer time than is needed for Monte Carlo statistics to stabilize, regardless of 

whether both solutions are computed sequentially or in parallel. The computational advantage of 

the parallel moment algorithm over parallel Monte Carlo simulations becomes more pronounced 

as grid size increases. Another computational advantage of the moment algorithm is that it 

allows analyzing a variety of flow scenarios by modifying forcing term statistics without 

recomputing Green’s functions as long as the boundary configuration remains unaltered.  

 

KEYWORDS: random media, porous media, stochastic equations, moment equations, 

nonlocality, finite elements, Laplace transform, perturbation, parallel computing.  
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1. INTRODUCTION 

The subsurface environment consists of natural soils and rocks whose hydraulic 

properties are best described as spatially correlated random fields [1]. Subsurface fluid flow 

takes place under the action of driving mechanisms whose exact nature, magnitude, and space-

time distribution are generally uncertain. Hence the equations that govern flow in geologic media 

are generally stochastic. 

To characterize the statistics of spatially varying subsurface medium properties such as 

hydraulic conductivity, one typically infers them from measurements at discrete borehole 

locations using geostatistical estimation techniques [2]. The corresponding estimates honor, and 

are thus conditional on, the measured data. Using these estimates and corresponding estimation 

error statistics (typically their conditional variance and spatial autcovariance) as input should 

allow one, in principle, to solve the stochastic flow equations in terms of leading conditional 

moments of dependent variables such as hydraulic head and flux [3]. The most common way to 

accomplish this is to conduct conditional Monte Carlo simulations. This is done by generating 

numerous equally likely realizations of a correlated random hydraulic conductivity field on a 

grid that is fine enough to allow resolving high-frequency spatial fluctuations, while honoring 

available measurements; simulating flow due to each realization by computing numerically the 

corresponding space-time distributions of head and flux; and estimating their sample statistics 

(most commonly conditional mean, variance and covariance). The approach requires specifying 

the joint, multivariate probability distribution of hydraulic conductivity (as well as of forcing 

terms) at all grid points. It is computationally demanding and lacks well-established convergence 

criteria. 
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We focus on an alternative that allows computing the first two conditional moments of 

head and flux directly by solving a corresponding system of conditional moment equations. Our 

interest lies in the solution of transient stochastic flow problems of the kind previously 

considered by [4]. These authors developed exact integro-differential equations for the first two 

conditional moments of head and flux in a bounded, randomly heterogeneous domain. Their 

equations are nonlocal and non-Darcian in that the mean flux depends on mean head gradients at 

more than one point in space-time. The equations are exact in that they fully capture the first two 

conditional moments in only a few formal terms including domain and boundary integrals, which 

incorporate all relevant initial and boundary conditions. As a result of conditioning and the 

inclusion of arbitrary forcing terms, the statistics of both the input and the output variables are 

generally nonstationary in space-time. To render their exact formalism workable, the authors 

approximated their moment equations recursively through expansion in powers of Yσ , the 

conditional standard deviation of (natural) log hydraulic conductivity Y ln K= . Their recursive 

approximations are nominally limited either to mildly heterogeneous or to well-conditioned 

strongly heterogeneous media with 1Yσ .  

In this paper we develop a highly accurate and efficient computational algorithm for the 

solution of nonlocal transient moment equations similar to those developed by [4]. After 

applying the Laplace transform to the governing stochastic flow equations, we derive exact 

nonlocal equations for the mean and variance-covariance of transformed head and flux, 

conditioned on measured values of Y. Approximating these conditional moment equations 

recursively to second order in Yσ  allows us to solve them by a finite element algorithm patterned 

after that developed for steady state flow by [5, 6]. We do so for superimposed mean-uniform 

and convergent flows in a two-dimensional domain. The solution is obtained using a highly 
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efficient parallel algorithm coupled with numerical inversion back into the time domain based on 

the method of [7]. The nonlocal solutions are compared with Monte Carlo simulations to assess 

their relative accuracies and computational efficiencies using single and multiple processors. 

2. GOVERNING STOCHASTIC EQUATIONS 

   We consider transient flow in a domain Ω  governed by Darcy’s law 

( , ) ( ) ( , )t K h= − ∇q x x x t                       ∈Ωx                                                            (1) 

and the continuity equation 

( ) ( , ) ( , )s
hS t
t

∂
= −∇⋅ +

∂
x q x f tx               ∈Ωx                                                                              (2) 

subject to initial and boundary conditions 

0( ,0) ( )h H=x x                                        ∈Ωx                                                                             (3) 

( , ) ( , )h t H t=x x                                        D∈Γx                                                                           (4) 

( , ) ( ) ( , )t Q− ⋅ =q x n x x t                              N∈Γx                                                                           (5) 

where  is Darcy flux, x is a vector of space coordinates, t is time,  is scalar hydraulic 

conductivity forming a correlated random field,  is hydraulic head, 

q K

h sS  is a deterministic 

specific storage term, f  is a random source term,  is random initial head,  is random 

head on Dirichlet boundaries 

0 ( )xH H

DΓ ,  is random flux into the flow domain across Neumann 

boundaries , and n  is a unit outward normal to the boundary 

Q

NΓ D NΓ = Γ ∪Γ . The forcing 

terms f , ,  and  are taken to be uncorrelated with each other or with . 0 HH Q K

Taking the Laplace transform of the stochastic equations (1) – (5) yields the transformed 

flow equations 

( , ) ( ) ( , )K hλ λ= − ∇q x x x                                                  ∈Ωx                                                   (6) 
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0( , ) ( ) ( , ) ( , ) ( ) (sS h f S Hλ λ λ λ∇ ⋅ + = +q x x x x x x)s           ∈Ωx                                                 (7) 

( , ) ( , )h Hλ λ=x x                                  D∈Γx                                                                             (8) 

( , ) ( ) ( , )Qλ λ− ⋅ =q x n x x                       N∈Γx                                                                             (9) 

where the overbar indicates Laplace transform.  

Let  be the ensemble mean of  conditioned on measurements at a set of 

discrete points in . The random hydraulic conductivity  differs from its unbiased 

conditional estimate <  by a zero mean random estimation error  such that 

( ) cK< x

Ω

>

>

c

( )K x

( )K x

( ) cK x ( )K ′ x

( ) ( ) ( ) ( ) 0cK K K K′ ′=< > + < > =x x x x                                                                        (10) 

Likewise we write 

( , ) ( , ) ( , ) ( , ) 0ch h h hλ λ λ λ′ ′=< > + < > =x x x x c                                                             (11) 

( , ) ( , ) ( , ) ( , ) 0c cλ λ λ λ′ ′=< > + < > =q x q x q x q x                                                              (12) 

where ( , ) ch λ< >x  and ( , ) cλ< q x >  constitute optimum unbiased predictors of head and flux 

conditioned on discrete measurements of , and ( )K x ( , )h λ′ x  and ( , )λ′q x  are corresponding 

prediction errors. 

A compact set of exact, nonlocal (integro-differential) equations governing the spatial 

distribution of ( , ) ch λ< >x , ( , ) cλ< q x >  and the variance-covariance of ( , )h λ′ x and ( , )λ′q x is 

found in [8]; corresponding equations in space-time are given by [4]. 

3. CONDITIONAL RECURSIVE MOMENT EQUATIONS  

The exact conditional moment equations in [8] are formally exact but contain unknown 

moments of a random Green’s function. To render the exact moment equations workable we 

expand them to second order in Yσ , the conditional standard deviation of (natural) log 
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conductivity  about its conditional mean, ( ) ( )lnY K=x x ( ) cY< >x . The latter and the 

conditional variance-covariance of the zero-mean log conductivity fluctuations 

 are inferred in practice from discrete measurements of conductivity 

using geostatistical methods [2]; we take them to be given. The perturbation yields recursive 

conditional first and second moment equations similar in principle to those originally developed 

in space-time by [4]. The recursive approximations are nominally limited either to mildly 

nonuniform log conductivity fields or to well-conditioned strongly nonuniform fields with 

( ) ( )Y Y′ x x

1Y

( ) cY= − < >x

σ . 

(0) ( , )< >q x (( )c GK hλ = − ∇x

(0) ( ,∇⋅ < q x () ( )c sS hλ λ> + <x 0 ( )H >x

(0) ( , )h ( , )c Hλ λ=<x x< >

(0) ) ( ) (c Q− < > ⋅ =<n x

exp ( )GK Y= < >x

H< > Q< >

(2)) ]c> + r

Perturbation of the exact mean flow equation yields a system of zero-order (indicated by 

superscript 0 encased in parentheses) conditional mean head and flux equations 

0) ( , )< x cλ >                       ∈Ωx                                                   (13)  

0) ( , ) ( , ) ( )c sf Sλ λ> =< > + <x x x      x                (14) ∈Ω

>                             D∈Γx                                                                 (15) 

( , , )λ λ >q x x                 N∈Γx                                                                (16) 

where  is the conditional geometric mean of K and ( ) f< > , 0H< > , 

 and  are ensemble mean forcing terms (assumed here to be unconditional and 

given). Second order corrections of head and flux are governed by 

cx

2
(2) (2) (0)( )( , ) ( )[ ( , ) ( , ( , )

2
Y

c G c cK h hσλ λ λ< > = − ∇ < > + ∇ <
xq x x x x x      x     (17) ∈Ωλ

(2) (2)( , ) ( ) ( , ) 0c s cS hλ λ λ∇⋅ < > + < > =q x x x           ∈Ωx                                                         (18) 

(2) ( , ) 0ch λ< >x =                                               D∈Γx                                                               (19) 

(2) ( , ) ( ) 0cλ− < > ⋅ =q x n x                                  N∈Γx                                                               (20) 
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where  is the conditional variance of Y ; 2 2( ) ( )Y Yσ ′=< >x x c ( )x

(2)

(0) (0)

( , )

( ) ( ) ( ) ( ) ( , , ) ( , )
c

T
G G c c cK K Y Y G h d

λ

λ λ
Ω

=

′ ′< > ∇ ∇ < > ∇ <∫ x y y

r x

x y x y y x y > y
                    (21) 

is a second-order approximation of the “residual flux” ( , ) ( ) ( , )c cK hλ λ′ ′= − < ∇ >r x x x ; 

 is the (given) conditional covariance of  between points x  and ( ) ( ) cY Y′ ′< x y > Y y ; and 

(0) ( , , ) cG λ< y x >  is the zero-order approximation of a random Green’s function associated with 

(6) – (9), obtained upon solving (13) – (16) subject to homogeneous boundary conditions and a 

Dirac delta source. We approximate mean head and flux by their two leading-order terms, 

(0) (2)

(0) (2)

( , ) ( , ) ( , )

( , ) ( , ) ( , )
c c

c c

h h hλ λ

λ λ

< > ≈< > + <

< > ≈< > + <

x x x

q x q x q x
c

c

λ

λ

>

>
                                                                            (22) 

The conditional head variance C t( , , , ) ( , ) ( , )hc ct h t h t′ ′=<x x x x > ( , )tx at  is the inverse 

Laplace transform of the covariance ( , , , ) ( , ) ( , )hc ch h tλ λ′ ′C t =<x x x x >  between transformed and 

original head. The latter is given to leading order of approximation by 

0

0

(2)

(2) (0) (0)

(0) (0)

(0) (0)

( , , , ) ( , , , )

( , , ) ( , ) ( , , )

( , , , ) ( , , ) ( , , )

( ) ( ) ( , ) ( , , ) ( , , )

( , , , )

hc hc

c c c

t

f c

s s H c c

H

C t C t

u t h G d

C G t G d d

S S C G t G d d

C K

λ λ

λ λ

c dλ τ τ λ

λ

λ τ

Ω

Ω Ω

Ω Ω

≈ =

− ∇ < > ⋅∇ < >

+ < − > < >

+ < > <

+

∫
∫ ∫ ∫
∫ ∫

y y

x x x x

y x y y x y

y z z x y x z y τ

>y z y z z x y x z y

y z
0

0

(0)

(0)

(0) (0)

( ) ( , , ) ( )

                                     ( ) ( , , ) ( )

( , , , ) ( , , ) ( , , )

D D

N N

t

G c

G c

t

Q c

G t

K G d d d

C G t G d

τ

λ τ

c d dλ τ τ λ

Γ Γ

Γ Γ

∇ < − > ⋅

∇ < > ⋅

+ < − > <

∫ ∫ ∫

∫ ∫ ∫

z

y

z z x n z

y y x n y z y

τ>y z z x y x z y

                                        (23) 
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where (2) ( , , )cu ty x  is the inverse Laplace transform of (2) ( , , )cu λy x , a second-order 

approximation of the cross-covariance ( , , ) ( ) ( , )c hλ ′ ′ cλu K=<y x y x >  between hydraulic head 

and conductivity, given explicitly by  

(2) (0) (0)( , , ) ( ) ( ) ( ) ( ) ( , ) ( , , )T
c G G c cu K K Y Y h Gλ λ

Ω
′ ′= − < > ∇ < > ∇ < >∫ z z c dλy x y z z y z z x z         (24) 

and 
0HC , fC , HC  and QC  are transformed covariances of the forcing terms (assumed to be 

known), 

0 0 0( , ) ( ) ( )

( , , , ) ( , ) ( , )

( , , , ) ( , ) ( , )
( , , , ) ( , ) ( , )

H

f

H

Q

C H H

C f f

C H H
C Q Q

λ τ λ τ

λ τ λ
λ τ λ τ

′ ′=< >

′ ′=< >

′ ′=< >

′ ′=< >

x z x z

x z x z

x z x z
x z x z

τ
                                                                                           (25) 

For consistency, we assume that all random fluctuations in forcing terms are of order Yσ . If 

driving forces are deterministic, (25) vanishes and (23) reduces to 

(2) (2) (0) (0)( , , , ) ( , , ) ( , ) ( , , )hc c c cC t u t h Gλ λ
Ω

= − ∇ < > ⋅∇ < >∫ y yx x dλy x y y x y                                 (26) 

Corresponding approximations can be derived for cross-covariances between Laplace 

transformed head or flux and the original head or flux at any two points in space-time [8]. 

5. COMPUTATIONAL ALGORITHM 

We solve the above recursive moment equations by the Galerkin method on a rectangular 

grid of square elements using bilinear Lagrange interpolation and weight functions ϕ . In 

particular, we write 

1

( , ) ( ) ( )
N

m m
m

p pλ λ ϕ
=

≈∑x x                                                                                                 (27) 
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where  is the number of nodes; N mp  is a transformed dependent variable, such as (0)
ch< > , 

(2)h< c>  or (2)
hcC , at node m; and ( )mϕ x  is a bilinear Lagrange interpolation function satisfying 

( )m n mnϕ δx =  where mnδ  is the Kronecker delta. Substituting (27) into the above recursive 

moment equations yields a system of finite element equations as shown below. In line with the 

inverse Laplace transform algorithm of [9], we discretize the transform parameter λ  as 

0 /k ik Tλ λ π= +                                                                                            (28) 0,1,2,..., 2 1k = K +

where 0 ln( ) /(2 )E Tλ = −

6−
max0.8T t=

,  is a dimensionless discretization error (which we set equal to 

),  and  is the simulation period (we set

E

mat10E = x 23K = ). We solve the finite 

element equations  times for 2( 1K + ) jkh , j = 1, 2, … N, once for each kλ . As these solutions are 

mutually independent, we solve them in parallel on multiple processors. To compute the inverse 

Laplace transform of head at node j and time t max(0, )t∈ , we employ the quotient difference 

algorithm of [7], 

2 1

0 0
1

1 1( ) exp( )[ Re{ exp( / )}]
2

K

j j jk
k

h t t h h ik t T
T

λ
+

=

= + ∑ π                                                                 (29) 

Galerkin finite element equations corresponding to the zero-order mean flow equations 

(13) – (16) are standard and thus not shown. Galerkin orthogonalization of (17) – (20) yields the 

finite element equations (Appendix A) 

(2) (0)

1 1
[ ] ( ) ( ) 1,2...

N N

nm nm m nm m n n
m m

A D h B h R P nλ λ λ
= =

+ + = + =∑ ∑ N                                                (30) 

where (2) ( )mh λ   is second-order conditional mean head correction at node  and the coefficients 

are computed according to 

m

( ) ( ) ( )nm G n mA K ϕ ϕ
Ω

= ∇ ⋅∇∫ x x x dx                                                                                                (31) 
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2 ( )( ) ( ) ( )
2

Y
nm G n mB K σ ϕ ϕ

Ω
= ∇ ⋅∇∫

xx x dx x

dx

                                                                                    (32) 

( ) ( ) ( )nm s n mD S ϕ ϕ
Ω

= ∫ x x x                                                                                                        (33) 

(2) ( , ) ( )n c nR dλ ϕ
Ω

= ⋅∇∫ r x x x                                                                                                        (34) 

2
(2)( ) ( , ) ( ) ( , ) ( ) ( )

2D D

Y
n n cP Q dσ λ ϕ λ ϕ

Γ Γ
= − < > − ⋅∫ ∫

x x x x r x n x xn dx                                              (35) 

The matrices , D and B (with terms AA nm, Dnm and Bnm, respectively) are real-valued, sparse and 

symmetric. The second-order residual flux term (2) ( , )c λr x  is computed via (Appendix B)  

(2)

(0) (0)
( )

1 1 1 1

( , )

( ) ( ) ( ) ( ) ( ) ( ) ( )
y y yx

e

e
c

M N NN
e e e e ee

G i G c ij k
i e j k

K K Y Y G h

λ

ϕ λ′ ′ ′ ′
=

′= = = =

=

′ ′∇ < >∑ ∑ ∑∑x x x

r x

x x y x y e e e
jkλ ′ ′∆

                     (36) 

where  and  ( 4 ) are the number of nodes in elements  and  within the x - 

and 

xN yN x yN N= = e e′

y -planes, respectively; yM  is the number of elements in the y- plane; (0)
ij

ee′G  is the zero-

order mean Green’s function at node i  of element  in the x-plane due to a unit source at node e

j  of element  in the y-plane; e′ (0) )kh (e λ′  is (0) )h ( ,λy  at node k  of element  in the y-plane; 

and  

e′

'
( ) ( )e e e e

ij j ke
dϕ ϕ′ ′ ′ ′∆ = ∇ ⋅∇∫ y yy y y                                                                                                     (37) 

Treating log hydraulic conductivity as a constant in each element, the covariance 

 between any points x  in element  and ( ) ( ) cY Y′ ′< x y > e y  in element  is approximated by 

, where  is the centroid of element e  and 

e′

( ) ( )e eY Y ′′ ′< x y c>
ex e′y  is the centroid of element e′ . 

Substituting (36) into (34) yields the finite element approximation 
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(0) (0)

1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
y y yx x M N NM N

e ee e e e ee e
n G ni G c ij k

e i e j k

R K K Y Y G hλ λ′ ′ ′ ′

′= = = = =

′ ′= Θ < >∑ ∑ ∑ ∑∑x y x y e e
jk
′ ′∆

x

                        (38) 

where 

( ) ( )ee e e
ni n ie

dϕ ϕΘ = ∇ ⋅∇∫ x xx x                                                                                                       (39) 

The finite element approximation of transformed head variance (25) is (Appendix B) 

(2) (2) (0) (0)
;

1 1 1
( , , , ) ( , ) ( , ) ( )

y y y

y

M N N
e e e

hc c j i j ij
e i j

C t u t G hλ λ′ ′ ′

′= = =

= − ∆∑ ∑ ∑x x x x e eλ ′ ′                                                       (40) 

where (0) ( , )e
iG λ′ x  is zero-order mean Green’s function at node i  within element  in the y-

plane due to a source of unit strength at node  within element e  in the x-plane; 

e′

x (0) ( )e
jh λ′  is 

zero-order conditional mean head at node j  in the y-plane; e e
ij
′ ′∆  is given by (37); and u t  

is the inverse transform of 

(2)
; ( ,

y

e
c j

′ x )

(2)
; ( , )

y

e
c ju λ′ x

y

 corresponding to hydraulic conductivity at point  and 

transformed head at node  in the y-plane, given by 

x

j

(2) (0) (0)
;

1 1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
z z z

y z y z z z

z z

M N N
e e e e e e e

c j G G c i j j i j
e i j

u K K Y Y G hλ λ′ ′′ ′′ ′′

′′= = =

′ ′= − < > Ξ∑ ∑∑x x z x z e eλ′′ ′′ ′′                         (41) 

Here zM  is the number of elements in the z-plane; 4zN =  is the number of nodes in element e′′  

within the -plane; z ( )(0)
z

e
jh λ′′  is (0) ( , )ch λz  at node  in element zj e′′  within the z-plane; (0)

z y

e
i jG ′′  is 

zero-order mean Green’s function at node  in element  within the z-plane due to a source of 

unit strength at node  within element e

zi e

yj ′′  in the y-plane; and 

''
( ) ( )

z z z z

e e e e
i j z i z je

dϕ ϕ′′ ′′ ′′ ′′Ξ = ∇ ⋅∇∫ z z z                                                                                                     (42) 

Corresponding finite element approximations can be derived for cross-covariances 

between Laplace transformed head or flux and the original head or flux at any two points [8]. All 
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of these moments are evaluated in parallel on multiple processors for discrete values of λ  and 

inverted numerically back into the time domain using the aforementioned algorithm.  

6. PARALLEL IMPLEMENTATION 

Our moment algorithm was implemented on a SGI Origin 2000 supercomputer using 

Message Passing Interface (MPI) [10], which has the advantage of being portable across a 

variety of computing platforms. The platform included a distributed memory MIMD system with 

88 processors at send/receive latency of 8 secµ  and peak bandwidth of 150 . SPMD 

(Single Program Multiple Data) programming was used to allow running the same code on each 

processor. We first computed  discrete Laplace transform parameters 

/ secMbytes

k2( 1)K + λ  on a processor 

of rank zero and then distributed the task of solving the corresponding finite element equations to 

p processors using the collective communication function MPI_SCATTER. If 

, then each processor contains mod(2( 1), ) 0K p+ = 2( 1) /K p+  discretized Laplace parameters. 

Otherwise, a processor of rank 1p −  was assigned mod(2( 1), )K p+  discretized Laplace 

parameters. To avoid facing a load-balancing problem between processors, we solved the finite 

element equations for each discrete value of kλ  using a direct (IMSL subroutine DLSLZG [11]) 

rather than an iterative solver [e.g., 12]. 

Although the inverse Laplace transform equation (35) could be implemented in parallel 

[e.g., 13], we found this unnecessary due to the relative speed of the corresponding sequential 

code. 

Monte Carlo simulations were implemented using the same finite element and Laplace 

inversion schemes as those used to solve the zero-order moment equations. As realizations of 

Monte Carlo simulation are mutually independent, they were distributed among p  processors 

using MPI_SCATTER.  
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7. COMPUTATIONAL EXAMPLE 

To illustrate our approach we consider superimposed mean uniform and convergent flows 

in a two-dimensional rectangular domain with 800M =  square elements (20 rows and 40 

columns) of uniform size ∆ =  measured in arbitrary consistent length units (Figure 

1). The length of the domain is 

1 2 0.2x x∆ =

1 40L 0.2 8= × =  and its width is 2 20 0.2 4L = × = . A uniform 

deterministic head  (in similar length units) is prescribed on the left boundary (8LH = 1 0x = ) 

and a constant head  on the right boundary (4=RH 1x 8= ). The bottom ( ) and top 

( ) boundaries are impermeable. Constant deterministic initial head  is assigned to 

all but the prescribed head boundary nodes of the grid. A point sink (pumping well) of 

deterministic strength Q  (in arbitrary consistent units of length per time) is placed at the center 

node of the domain ( ). Transient flow is simulated over a period t  of similar 

time units. Solutions of the finite element equations are obtained at discrete time steps 

 spaced uniformly at unit intervals 

2x =

0 4H =

20sim =

0

2 4x =

1,2,t =

p

1x 24, 2x= =

...20 1t∆ = . We employ the same computational grid 

and time steps for all moment and Monte Carlo solutions to render them directly comparable. 

The log conductivity field is taken to be stationary and isotropic with exponential 

covariance function , where  is separation distance (lag) between two 

points in the domain and  is the (integral) correlation scale. For purposes of Monte Carlo 

simulation we assume that Y is multivariate Gaussian (no such distributional assumption is 

required for the moment solution). Random Y fields are generated using the sequential Gaussian 

simulation code SGSIM [14]. Each element is assigned a constant conductivity corresponding to 

the value generated at its center. We first generate one unconditional realizations of Y  with 

mean , variance  and correlation scale l

2( ) exp( / )YC r r lσ= −

l

2 1Yσ =

r

0Y< > = 1= . We then “measure” Y (without 
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error) at 12 evenly-distributed conditioning points shown by dark squares in Figure 1 and 

generate 2000 corresponding conditional realizations of Y .  

Nh

The first two sample moments of these realizations are used as input into our conditional 

moment algorithm and Monte Carlo simulation to render the comparison of their solutions 

meaningful. Figure 2 depicts an image of the conditional sample variance  of conditional log 

conductivity and two corresponding profiles. Conditioning clearly reduces the sample variance 

below its uniform unconditional value of 1. At conditioning points (marked by open circles) the 

sample variance is zero. 

2
YS

Monte Carlo simulations consist of solving equations (6) – (9) for each realization and 

computing the first two sample moments of the results. Convergence of the MC simulation 

process is diagnosed by examining the way in which sample mean and variance stabilize as 

number of Monte Carlo (NMC) realization increases. Figure 3 shows how the conditional sample 

mean  and variance  of head at grid point (4.0,2.0) vary with NMC at times 

. Although the conditional sample means  become stable after about 1000 

realizations, the conditional sample variances  require at least 2000 realizations to exhibit 

partial stabilization. The stabilization of flux variance requires many additional realizations.  

( )Nh x

, 20

2 ( )hS x

1, 5t = ( )x

2 ( )hS x

Figure 4a compares contours of conditional mean head at time 5t =  as computed using 

moment (dashed) and Monte Carlo (solid) results. Figure 4b illustrates how conditional mean 

head at point ( ) evolves with time. Analogous depictions of conditional head variance are 

presented in Figure 5. In both cases the moment and Monte Carlo solutions compare very well. 

Uncertainty is seen to decreases monotonically with time upstream and increase downstream of 

the point source. Readers interested in additional details concerning the space-time evolution of 

4.0,2.0
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the first two conditional moments of head and flux under these and similar conditions may want 

to consult [8]. 

8. COMPUTATIONAL EFFICIENCY 

We compare our parallel moment and Monte Carlo algorithms in terms of their speedups 

and efficiencies. According to [15], speedup and efficiency are defined respectively as 

 and , where T  and T p  are runtimes of a serial code and 

a parallel code with 

( ) (1) / ( )S p T T p= ( ) ( ) /E p S p p= (1) ( )

p  processors. Runtimes are measured when the codes run as batch jobs in a 

dedicated queue. When runtime varies from processor to processor, T p  is taken to be the 

longest among these runtimes. 

( )

Runtimes, speedups and efficiencies of our parallel moment and Monte Carlo codes using 

1, 4 and 8 processors are listed for several variables in Table I. The performance of the codes is 

seen to be satisfactory on 4 processors but less so on 8 processors. This is due to an increase in 

overhead such as idling and communication between processors. Performance for second-order 

residual flux is the worst because the problem size is small (runtime using one processor is less 

than 3 minutes). As the number of processors increases, the size of each sub problem for local 

calculation decrease further, bringing about a relative increase in overhead. This causes 

efficiency to diminish. In our case, the master-slave style I/O operation does not affect 

performance. For example, the most output demanding calculation of zero-order mean Green’s 

functions (requiring the generation of 39312 files) on 4 processors is done with more than 90% 

efficiency. The reason is that the output data set (13784 bytes for each file) is small compared to 

the bandwidth of 150 . The efficiency of the parallel Monte Carlo code is lower than 

the average efficiency of parallel moment algorithm codes. It is possible that the former does not 

synchronize as well as the latter. 

/ secMbytes
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Table II compares moment and Monte Carlo runtimes required to compute the mean and 

variance of head using 1, 4 and 8 processors. Although zero- and second-order mean head are 

computed with serial codes, since corresponding runtimes are very short (less than 1 minute), 

comparison of MC and ME runtimes is still meaningful. Our moment algorithm clearly 

outperforms the Monte Carlo algorithm regardless of whether one uses one or multiple 

processors. For example, the time required to compute mean head using the moment algorithm 

on one processor is about one fourth the corresponding time required for Monte Carlo 

simulations; the time required to compute head variance using the moment algorithm is about 

one half of the corresponding Monte Carlo runtime. The ratio between moment and Monte Carlo 

runtimes decreases further as the number of processors increases. 

To explore the effect of grid size on parallel performance of our moment algorithm we 

reduce the number of elements, M, from  to  and . Figures 6a-c show how 

efficiency varies with M for three different moments. Cleary, performance improves with grid 

size. Figure 6d indicates that the opposite is true for Monte Carlo simulations. Hence the 

computational advantage of our moment algorithm over Monte Carlo simulations improves with 

grid size.  

800 600 400

9. SUMMARY 

We proposed an efficient parallel computational algorithm for leading conditional 

moments of transient flow variables in randomly heterogeneous porous media. Our algorithm is 

considerably faster than Monte Carlo simulations and its relative computational efficiency 

improves further with grid size. The algorithm is based on Green’s functions which, once 

computed for a given configuration of boundary conditions, can be used repeatedly to investigate 
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the effect of various boundary and source scenarios on mean flow behavior and the 

corresponding uncertainty.  
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Appendix A    

We approximate (0) ( , ) ch λ< >x  and (2) ( , ) ch λ< >x  as 

(0) (0)

1

( , ) ( ) ( )
N

c m m
m

h hλ λ
=

< > ≈∑x xϕ         (2) (2)

1

( , ) ( ) ( )
N

c m m
m

h hλ λ
=

≈∑x ϕ x< >                                    (A1) 

Substituting (17) into (18), multiplying by the basis function, integrating over Ω  and applying 

Green’s first identity leads to 

2
(2) (0)

(2) (2)

2
(2)(2) (0)

( )( ) ( , ) ( ) ( ) ( , ) ( )

( , ) ( ) ( ) ( , ) ( )

( )( )[ ( ) ( , ) ( ) ( , ) ( , )] ( )
2D

Y
G c n G c n

c n s c n

Y
n G c G c c

K h d K h d

d S h d

K h K h

σλ ϕ λ ϕ

λ ϕ λ λ ϕ

σϕ λ λ

Ω Ω

Ω Ω

Γ

∇ < > ⋅∇ + ∇ < > ⋅∇

− ⋅∇ + < > =

∇ < > + ∇ < > − ⋅

∫ ∫
∫ ∫

∫

xx x x x x x x x
2

r x x x x x x x

xx x x x x r x n x dλ x

            (A2) 

where the boundary integral vanishes on the Neuman boundary NΓ  by virtue of (20). Recalling 

that (0)( , ) ( ) ( , ) ( )G cQ K hλ λ− < >= ∇ < > ⋅x x x n x  (16) and (2) ) ch ( ,λ< >x  is zero on the Dirichlet 

boundary, the right hand side of (A2) becomes 

2
(2)( ) ( , ) ( ) ( , ) ( ) ( )

2D D

Y
n c nQ dσ λ ϕ λ ϕ

Γ Γ
− < > − ⋅∫ ∫

x x x x r x n x x dx                                                    (A3) 

Substituting (A1) and (A3) into (A2) leads directly to equations (30) – (35). 

Appendix B    

In a two-dimensional domain (0) ( , , ) cG λ< >y x  is a four-dimensional function. We 

approximate it as the weighted sum of its values at all N nodes in the x- and y-plane according to  
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(0) (0)

1 1

( , , ) ( ) ( ) ( )
yx NN

c ij i
i j

G Gλ λ ϕ
= =

< > ≈∑∑ jϕy x x y                                                    (B1) 

where (0) ( )ijG λ  is the zero-order conditional mean Green’s function in the Laplace domain at 

node  in the x-plane due to a source of unit strength at node i j  in the y-plane. Clearly 

(0) (0) ( )ij jiG G( )λ λ≡ . 

Substituting the nodal approximation of zero-order mean hydraulic head (A1) and 

Green’s function (B1) into (21) leads to 

(2)

(0) (0)

1 1 1

( , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
y

c
NN N

T
G G c ij i j k k

i j k

K K Y Y G h d

λ

λ ϕ ϕ λ ϕ
Ω

= = =

=

′ ′< > ∇ ∇ ∇∑∑ ∑∫ x y y

r x

x y x y x y y y
               (B2) 

Approximating the domain integral in the y-plane by a summation of integrals over elements in 

the y-plane gives 

'

(2)

(0) (0)

1 1 11

( , )

( ) ( ) ( ) ( ) ( ) ( ) ( )
y y y

c
M N NN

ee e e e
G i G c ij k

i j ke

K K Y Y G h

λ

ϕ λ jkλ′ ′

= = ==

=

′ ′∇ < >∑ ∑ ∑∑x

r x

x x y x y ′ ′∆
                                    (B3) 

where  is the number of nodes in element yN e′  within the y-plane; yM  is the number of 

elements in the y-plane; (0) ( )e
kh λ′  is (0) ( , )h λy  at node  of element k e′  in the y-plane; and e e

ij
′ ′∆  

is given by (37). Treating log hydraulic conductivity as a constant in each element, the 

covariance  between any points  in element e  and ( ) ( ) cY Y′ ′< x y > x y  in element e′  is 

approximated by , where  is the centroid of element  and ( )eY Y< ( )e
c

′′ ′x y > xe e e′y  is the 

centroid of element . Evaluating the second-order residual flux at each element center x  by 

means of (B3) yields (36). Equations (40) – (42) are obtained in a similar manner. 

e′ e
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LIST OF FIGURES 

FIG. 1. Computational grid, conditioning points (black squares), boundary conditions and point 

source (black circle). 

FIG. 2. (a) Image of conditional sample variance  and its profiles along sections (b) 

 and (c)  obtained from 2000 conditional Monte Carlo realizations with 

unconditional variance  and integral scale 

2 ( )YS x

2 2.5x = 2 1.9x =

2
Yσ =1 1l = . 

FIG. 3. Sample mean (a) and variance (b) of head at 1 24, 2x x= =  versus NMC for 2 1, 1Y lσ = = .  

FIG. 4. (a) Contours of conditional mean head at time 5t =  and (b) conditional mean head 

versus time at point ( ) obtained using moment (dashed) and Monte Carlo (solid) 

algorithms for . 

4.0,2.0

1= =2 1,Y lσ

FIG. 5. (a) Contours of conditional head variance at time 5t =  and (b) conditional head variance 

versus time at points B ( 2.0 ) and C ( 6.0 ) obtained using moment (dashed) and Monte 

Carlo (solid) algorithms for . 

, 2.0

2
Yσ

, 2.0

1, 1l= =

FIG. 6. Effect of number of elements M on efficiency in computing (a) zero-order mean Green’s 

function (0)
cG< > , (b) second-order cross-covariance (2)

cu , (c) second-order head variance (2)
hcC  

using moment and (d) Monte Carlo algorithms for 2 1, 1Y lσ = = . 
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Table I 

 Monte Carlo Moment algorithm 

Variables 2000  
Realizations 

(0)
cG< > (2)

cr  (2)
cu  (2)

hcC  

(1)T  (sec) 49900.65 12523.17 171.00 11235.32 5854.05 
(4)T (sec) 15537.42 3265.90 54.71 3091.83 1719.27 

(4)S  3.21 3.84 3.13 3.63 3.40 
(4)E  (%) 80.29 95.89 78.14 90.85 85.12 

      
(8)T  (sec) 9454.74 1920.97 37.37 2005.68 863.19 

(8)S  5.28 6.52 4.58 5.60 6.78 
(8)E  (%) 65.98 81.49 57.20 70.02 84.77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 30



 

 31

Table II 

             Variables 
Runtime 

Mean  
Head 

Head 
Variance

MC (min) 831.90 831.90 P=1 
ME (min) 212.83 494.30 

MC (min) 259.20 259.20 P=4 
ME (min) 56.59 135.36 

MC (min) 157.80 157.80 P=8 
ME (min) 33.90 80.59 
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